

Volume: 17 no. 01 – Maret 2022- hlm. 58-72

ENKRIPSI DATA PADA GAME SMARTPHONE SIMULASI HIDUP BERSIH DAN SEHAT MENGGUNAKAN UCS TRANSFORMATION FORMAT 8

Oleh:

Geraldi Radityo Wiwono^{1*}, Marlina², Izmy Alwiah Musdar³ ^{1,2,3}Teknik Informatika, STMIK Kharisma Makassar e-mail: ¹geraldiradityo_18@kharisma.ac.id, ²marlina@kharisma.ac.id, ³izmyalwiah@kharisma.ac.id

Abstrak: Penelitian ini bertujuan untuk mengenkripsikan data simpanan pengguna pada Game Smartphone Simulasi Perilaku Hidup Bersih dan Sehat dengan UCS Transformation Format 8 menggunakan bahasa C# di platform Unity dan Visual Studio 2019. Metode yang digunakan dalam penelitian ini adalah metode eksperimen untuk enkripsi dan dekripsi simpanan data pengguna yang berupa nama(string), skor(float), total skor(float), nyawa(float), dan kategori yang terbuka(float). Hasil dari penelitian ini menunjukkan bahwa kode enkripsi dan dekripsi yang dibuat telah berjalan dengan optimal. Simpanan data telah berhasil dienkripsi sehingga data tidak dapat dilihat dan dibaca oleh pihak yang tidak berwenang. Ukuran simpanan data yang telah dienkripsi bertambah sekitar 105-110 bytes.

Kata kunci: kriptografi,UTF-8, game, smartphone, android, enkripsi, dekripsi

Abstract: This study aims to encrypt user saved data on a Smartphone Game Simulasi Hidup Bersih dan Sehat with UCS Transformation Format 8 using C# language on Unity and Visual Studio 2019 platforms. The method used in this study is an experimental method for encryption and decryption of user stored data. in the form of name (string), score (float), total score (float), lives (float), and unlocked categories (float). The results of this study indicate that the created encryption and decryption codes have run optimally. The stored data has been successfully encrypted so that the data cannot be seen and read by unauthorized parties. The size of the encrypted data store increased by about 105-110 bytes.

Keywords: kriptography, UTF-8, game, smartphone, android, encryption, decryption

1. PENDAHULUAN

Setiap aplikasi mobile, rumit maupun sederhana membutuhkan keamanan minimal untuk dapat digunakan user dan developer dengan aman. Keamanan tersebut dapat dicapai dengan mengenkripsi data. Menurut National Institute of Standards and Technology (NIST), enkripsi data adalah transformasi kriptografik data (disebut "plaintext") ke dalam bentuk (disebut "ciphertext") yang menyembunyikan makna asli data untuk mencegahnya diketahui atau digunakan. Sistem enkripsi mengacak data sensitif menggunakan kalkulasi matematis untuk mengubah data menjadi kode. Data asli hanya dapat diungkapkan dengan kunci yang benar, sehingga tetap aman dari semua orang kecuali pihak yang berwenang [1].

^{*} Corresponding author : Geraldi Radityo Wiwono (geraldiradityo_18@kharisma.ac.id)

Dalam penelitian ini, peneliti akan menggunakan UTF-8 untuk mengenkripsi data simpanan pengguna di game Simulasi Edukasi Perilaku Hidup Bersih dan Sehat. Game berupa kuis-kuis seputar keseharan umum dan perilaku sehari-hari yang benar sesuai dengan himbauan Kementrian Kesehatan tentang Perilaku Hifup Bersih dan Sehat (PHBS) [2]. Pengguna akan memulai akan memulai game dengan 3 kategori kuis awal yang dapat dimainkan. Seiring pengguna memainkan dan menyelesaikan quis-quis yang ada, akan terbuka kategori-kategori lainnya sampai sebanyak 12 kategori yang dapat dibuka sesuai dengan skor tertinggi dan skor total pengguna. Data simpanan kategori dan skor pengguna inilah yang dienkripsi dengan UTF-8 agar pengguna lebih sulit untuk membaca dan mengubah nilai-nilainya. Data simpanan pengguna yang akan dienkripsi adalah nama pengguna berformat string, skor terakhir pengguna berformat float, skor tertinggi pengguna

UTF-8 adalah singkatan dari UCS Transformation Format 8 (UTF-8). UCS adalah singkatan dari Universal Coded Character Set atau singkatnya Unicode. Unicode adalah pengkodean karakter universal, dikelola oleh Unicode Consortium [7]. Agar komputer dapat menyimpan teks dan angka yang dapat dipahami manusia, diperlukan suatu kode yang mengubah karakter menjadi angka. Standar Unicode mendefinisikan kode poin menggunakan pengkodean karakter. Alasan mengapa pengkodean karakter sangat penting adalah agar setiap perangkat dapat menampilkan informasi yang sama. Standar pengkodean ini memberikan dasar untuk pemrosesan, penyimpanan, dan pertukaran data teks dalam bahasa apa pun di semua perangkat lunak modern dan protokol teknologi informasi [9]. Unicode mencakup semua karakter untuk semua sistem penulisan dunia, modern dan kuno. Ini juga mencakup simbol teknis, tanda baca, dan banyak karakter lain yang digunakan dalam menulis teks. Standar Unicode dimaksudkan untuk mendukung kebutuhan semua jenis pengguna, baik dalam bisnis atau akademis, menggunakan skrip mainstream atau minoritas [7]. Tetapi ada beberapa masalah dengan ini, misalnya [9]:

Metode penyandian Unicode UTF-8 memecahkan masalah ini. Hingga karakter nomor 128, nilai American Standard Code for Information Interchange (ASCII) biasa digunakan (jadi misalnya A adalah 01000001). ASCII adalah 128 huruf, angka, dan tanda baca standar dalam penulisan bahasa inggris [10]. Untuk karakter apa pun di luar 128, UTF-8 memisahkan kode menjadi dua byte dan menambahkan '110' ke awal byte pertama untuk

ditampilkan bahwa itu adalah byte awal, dan '10' ke awal byte kedua untuk menunjukkan bahwa itu mengikuti byte pertama [9].

Jadi, untuk setiap karakter di luar angka 128, penyandian memiliki dua byte:

[110xxxxx] [10xxxxxx]

Dan cukup dengan mengisi biner untuk nomor di antaranya:

[11000101] [10000101] (itu adalah angka 325 → 00101000101)

Ini berfungsi untuk 2048 karakter pertama. Untuk karakter di luar itu, satu lagi '1' ditambahkan di awal byte pertama dan byte ketiga juga digunakan:

[1110xxxx] [10xxxxxx] [10xxxxxx]

Ini memberi 16 spasi untuk kode biner. Dengan cara ini, UTF-8 naik hingga empat byte:

[11110xxx] [10xxxxxx] [10xxxxxx] [10xxxxxx]

Dengan cara ini, UTF-8 menghindari masalah yang disebutkan di atas dan memungkinkan untuk memecahkan kode karakter dari bentuk biner secara mundur (*backward compatible*) [8]. Dikarenakan hal-hal tersebut, UTF-8 adalah encoding yang paling banyak digunakan di web dengan persentase sebesar 92,4% [12]. Diharapkan setelah game telah di-enkripsi dengan pengkodean UTF-8, data-data game seperti akun, simpanan data, kode aplikasi dan data-data pengguna seperti nama user, email, password akan terenkripsi dengan baik, sehingga tidak dapat diubah, dicuri, maupun dirusakkan oleh pengguna yang tidak berwenang.

2. METODE PENELITIAN

2.1 Tahapan Penelitian

Tahapan penelitian yang digunakan dalam penelitian ini adalah sebagai berikut.

a. Perumusan Masalah

Bagaimana meng-enkripsi simpanan data pengguna game smartphone Simulasi Edukasi Hidup Bersih dan Sehat menggunakan UCS Transformation Format dilakukan.

b. Hipotesis Masalah

Data game smartphone Simulasi Edukasi Hidup Bersih dan Sehat dapat di-enkripsi dengan metode UCS Transformation Format 8 menggunakan C# di unity yang kemudian akan ditambahkan beberapa baris kode.

c. Tujuan Penelitian

Meng-enkripsi simpanan data pengguna game smartphone Simulasi Edukasi Hidup bersih dan Sehat dengan UCS Transformation Format 8.

d. Pengumpulan Data

Dalam penelitian ini, proses pengumpulan data dilakukan dengan melakukan studi literatur, di mana penulis mempelajari berbagai bahan baik dalam bentuk buku, jurnal, prosiding, website, makalah yang berkaitan dengan apa yang penulis teliti.

e. Pengolahan Data

Metode yang digunakan dalam mengolah data adalah metode experimen. Data yang telah dikumpulkan dari hasil dokumen akan disusun dan diolah berdasarkan kecocokan dan kesamaan data dengan penelitian yang dilakukan penulis.

f. Penarikan Kesimpulan

Penarikan kesimpulan dilakukan dengan menguji enkripsi yang telah dibuat dan diterapkan di game. Pengujian akan dilakukan sebelum dan sesudah diterapkannya enkripsi dari sisi pengembang dan dari sisi pengguna. Pengembang akan langsung mengakses hasil enkripsi menggunakan platform pengembangan game dan pengguna akan mengakses hasil enkripsi melalui Windows.

2.2 Deskripsi Singkat Penelitian

Pada penelitian ini akan dibuat kelas baru yang berisi dua fungsi untuk Game Simulasi Perilaku Hidup Bersih dan Sehat. Fungsi tersebut adalah fungsi untuk melakukan proses enkripsi dan dekripsi data. Setelah dibuatnya kedua fungsi tersebut, fungsi akan dipanggil dan diaplikasikan di data simpanan pengguna.

2.3 Proses Enkripsi File

Pada tahap ini merancang fungsi untuk mengenkripsi data dengan UTF-8. Dibawah ini merupakan diagram blok untuk proses enkripsi file.

Gambar 1. Diagram Blok Proses Enkripsi File

Gambar 2 memperlihatkan flowchart proses enkripsi file secara keseluruhan. Untuk melakukan proses enkripsi file hal pertama yang dilakukan adalah membaca plainteks berupa data save yang telah disimpan oleh game.

KHARISMA TECH

Gambar 2. Flowchart Proses Enkripsi File

2.4 Proses Dekripsi File

Pada tahap ini merancang fungsi untuk dekripsi data UTF-8 ke data semula. Gambar 3 merupakan diagram blok untuk proses dekripsi file.

Gambar 3. Diagram Blok Proses Dekripsi File

Gambar 4 memperlihatkan flowchart proses dekripsi file secara keseluruhan. Untuk melakukan proses dekripsi file hal pertama yang dilakukan adalah membaca cipertext berupa data save terenkripsi yang telah disimpan oleh game.

Geraldi Radityo Wiwono, Marlina, Izmy Alwiah Musdar

KHARISMA TECH

Gambar 4. Flowchart Proses Dekripsi File

2.5 Perancangan Kode Program

Pada bagian ini, akan dirancang kode program yang akan digunakan untuk enkripsi dan dekripsi data game pengguna.

Pada Gambar 5, adalah sisipan kode program cara merancang dan membuat enkripsi dan dekripsi di Unity menggunakan Bahasa pemograman C# dibuka di Visual Studio 2019. Berikut adalah Langkah-langkahnya:

- 1. Membuat Script Baru di Assets -> Create -> C# Script.
- 2. Menambahkan Library yang dibutuhkan.
- 3. Membuat kunci.
- 4. Membuat Kelas enkripsi dan isinya.
- 5. Membuat kelas dekripsi dan isinya.

Geraldi Radityo Wiwono, Marlina, Izmy Alwiah Musdar

KHARISMA TECH

Gambar 5. Koding kelas enkripsi dan dekripsi menggunakan C#

Gambar 6. Kode Penerapan Enkripsi dan Dekripsi di Save dan Load menggunakan C#

Pada Gambar 6, adalah sisipan kode program untuk memanggil dan menerapkan enkripsi dan dekripsi pada simpanan data pengguna di Unity menggunakan Bahasa pemograman C# dibuka di Visual Studio 2019.

3. HASIL DAN PEMBAHASAN

3.1 Pengujian Kelas Enkripsi dan Dekripsi

a. Pengujian Terhadap string

Pada bagian ini dilakukan pengujian untuk mengenkripsi string dan setelah proses enkripsi string selesai dilakukan akan dilihat hasilnya kemudian dilakukan pengujian dekripsi untuk mengembalikan string seperti semula. Pengujian akan dilakukan di kelas Test yang dibuka di Visual Studio 2019 dan consolenya akan dilihat di Unity.

1. Pengujian Enkripsi

Pengujian dilakukan dengan memasukkan perintah Debug.Log untuk memunculkan perintah di console, dan ditambahkan kelas enkripsi yang telah dibuat yaitu Encyption.Encrypt. Tujuan pengujian untuk memastikan apakah kelas enkripsi yang dibuat telah bekerja. Pengujian dilakukan dengan format dan panjang string yang berbeda-beda. Pengujian dilakukan sebanyak lima kali. Hasil pengujian dapat dilihat di Tabel 1.

String	Hasil Enkripsi
STMIK	/vIWA59gLeg=
STMIK Kharisma	rE1u5nSOImk32iKKB7HyIA==
STMIK Kharisma Makassar	rE1u5nSOImn+WtT+1INH45kzdy5lCdEZ
STMIK Kharisma Makassar 2019	rE1u5nSOImn+WtT+1INH4wxzf9qiwgjEVq3bMGONQVg=
STMIK Kharisma Makassar 2019 Teknik Informatika	
000	rE1u5nSOImn+WtT+1INH4wxzf9qiwgjEnUEZwOmu8omPso+axZBeQiG71xdo6KKw7PHy82Kp7ZI=

Tabel 1: Pengujian Enkripsi terhadap string menggunakan C# di Visual Studio 2019

2. Pengujian Dekripsi

Pengujian dilakukan dengan memasukkan perintah Debug.Log untuk memunculkan perintah di console, dan ditambahkan kelas dekripsi yang telah dibuat yaitu Encyption.Encrypt. Tujuan pengujian untuk memastikan apakah kelas dekripsi yang dibuat telah bekerja. Pengujian dilakukan dengan format enkripsi UTF-8 dalam string yang merupakan hasil dari pengujian enkripsi. Pengujian dilakukan sebanyak lima kali. Hasil pengujian dapat dilihat di Tabel 2.

Tabel 2: Pengujian kelas dekripsi terhadap hasil enkripsi menggunakan C# di Visual Studio 2019

UTF-8	Hasil Dekripsi
/vIWA59gLeg=	STMIK
rE1u5nSOImk32iKKB7HyIA==	STMIK Kharisma
rE1u5nSOImn+WtT+1INH45kzdy5lCdEZ	STMIK Kharisma Makassar
rE1u5nSOImn+WtT+1INH4wxzf9qiwgjEVq3bMGONQVg=	STMIK Kharisma Makassar 2019
rE1u5nSOImn+WtT+1INH4wxzf9qiwgjEnUEZwOmu8omPso+axZBeQiG71xdo6KKw7PHy82Kp7ZI=	STMIK Kharisma Makassar 2019 Teknik Informatika @@@

b. Pengujian Terhadap Angka dan Desimal

Pada bagian ini dilakukan pengujian untuk mengenkripsi angka dan desimal dan setelah proses enkripsi string selesai dilakukan akan dilihat hasilnya kemudian dilakukan pengujian dekripsi untuk mengembalikan angka dan desimal seperti semula. Pengujian akan dilakukan di kelas Test yang dibuka di Visual Studio 2019 dan consolenya akan dilihat di Unity.

1. Pengujian Enkripsi

Pengujian dilakukan dengan memasukkan perintah Debug.Log untuk memunculkan perintah di console, dan ditambahkan kelas enkripsi yang telah dibuat yaitu Encyption.Encrypt. Tujuan pengujian untuk memastikan apakah kelas enkripsi yang dibuat telah bekerja. Pengujian dilakukan dengan angka dan desimal yang berbeda-beda. Pengujian dilakukan sebanyak lima kali. Hasil pengujian dapat dilihat di Tabel 3.

Tabel 3. Pengujian kelas enkripsi terhadap angka dan desimal menggunakan C# di Visual Studio 2019

UTF-8	Hasil Dekripsi
axUaBIBVbRI=	0
8HV3vI07E9o-	1000
	1000
Matp3LezSFA=	1234
BSXQnKeJG6Y=	1,234
FBFKuKKBigE=	12,34

2. Pengujian Dekripsi

Pengujian dilakukan dengan memasukkan perintah Debug.Log untuk memunculkan perintah di console, dan ditambahkan kelas dekripsi yang telah dibuat yaitu Encyption.Encrypt. Tujuan pengujian untuk memastikan apakah kelas dekripsi yang dibuat telah bekerja. Pengujian dilakukan dengan format enkripsi UTF-8 dalam string yang merupakan hasil dari pengujian enkripsi. Pengujian dilakukan sebanyak lima kali. Hasil pengujian dapat dilihat di Tabel 4

Tabel 4. Pengujian kelas dekripsi terhadap angka dan desimal menggunakan C# di Visual Studio 2019

Angka dan Decimal	Hasil Enkripsi
0	axUaBIBVbRI=
1000	8HV3vl0ZF9o=
1234	Mafp3LezSFA=
1,234	BSXQnKeJG6Y=
12,34	FBFKuKKBigE=

c. Pengujian terhadap simpanan data pengguna

Koding enkripsi dan dekripsi akan diuji dan diterapkan di aplikasi game PHBS. Penerapan akan dilakukan di platform Windows 10, menggunakan Unity2D dan Visual Studio 2019 untuk debugging. Penguji akan memperlihatkan hasil enkripsi simpanan data pengguna sebelum dan sesudah dienkripsi. Hasil enkripsi dan dekripsi akan diperlihatkan dari dua hak akses yang berbeda yaitu pengembang dan pengguna.

Pengujian Enkripsi Simpanan Data Pengguna dari Sisi Pengembang
 Pengembang dapat mengakses langsung data pengguna saat mengembangkan game di

Unity dengan menggunakan perintah Debug untuk menampilkannya di console.

a. Sebelum Dienkripsi

Project E Console	
Clear 🔻 Collapse Error Pause Editor 🕶	۹
04:42:09] xml version="1.0" encoding="utf-16"? <savestate xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-in</td><td>istance"></savestate>	
xml version="1.0" encoding="utf-16"?	
<savestate xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
<name>Player 1</name>
<score>300</score>
<scoreCount>400</scoreCount>
<lives>2</lives>
<CategoryUnlock>0</CategoryUnlock>
</SaveState>
UnityEngine.Debug:Log (object)
SaveManager:Awake () (at Assets/Puppeteer/TriviaQuizGame/CS_Assets/CS_Scripts/Types/SaveManager.cs:15)</td><td>"></savestate>	

Gambar 7. Tampilan console simpanan data pengguna untuk pengembang sebelum dienkripsi

Pada Gambar 7, dapat dilihat bahwa data pengguna belum terenkripsi, sehingga data simpanan pengguna seperti nama, skor, skor tertinggi, nyawa, dan kategori yang terbuka dapat dilihat secara langsung.

b. Setelah Dienkripsi

Gambar 8. Tampilan console simpanan data pengguna untuk pengembang setelah dienkripsi

Pada Gambar 8, dapat dilihat bahwa data simpanan pengguna sudah terenkripsi dengan UTF-8, sehingga semua simpanan data tidak dapat terbaca dengan bahasa awam karena sudah dalam bentuk enkripsi UTF-8.

2. Pengujian Enkripsi Simpanan Data Pengguna dari Sisi Pengguna

Pengguna dapat mengakses data pengguna dalam game di Computer\HKEY_CURRENT_USER\SOFTWARE*Nama Perusahaan**Nama Game*.

a. Sebelum Dienkripsi

Tegistry Earton										
Edit Binary Value										
Value name:										
save_h2088338340										
Value o	data:									
60004	00	3C	3F	78	6D	6C	20	76	65	xml ve</td
q 1	08	72	73	69	6F	6E	3D	22	31	rsion="1
¢ 2	10	2E	30	22	20	65	6E	63	6F	.0" enco
4 3	18	64	69	6E	67	3D	22	75	74	ding="ut
¢ 4	20	66	2D	31	36	22	3F	3E	ØD	f - 1 6 " ? > .
	28	ØA	3C	53	61	76	65	53	74	. < SaveSt
0	30	61	74	65	20	78	6D	6C	6E	ate xmln
8	38	73	3A	78	73	64	3D	22	68	s : x s d = " h
9	40	74	74	70	ЗA	2F	2F	77	77	ttp://ww
10	48	77	2E	77	33	2E	6F	72	67	w.w3.org
11	50	2F	32	30	30	31	2F	58	40	/2001/XM
1 2	58	4C	53	63	68	65	6D	61	22	LSchema"
13	60	20	78	6D	6C	6E	73	ЗA	78	xmlns:x
1 4	68	73	69	3D	22	68	74	74	70	si="http
1 5	70	3A	2F	2F	77	77	77	2E	77	://www.w
1 6	78	33	2E	6F	72	67	2F	32	30	3.org/20
2 17	80	30	31	2F	58	4D	4C	53	63	01/XMLSc
18	88	68	65	6D	61	2D	69	6E	73	hema-ins
1 9	90	74	61	6E	63	65	22	3E	ØD	tance">.
20	98	ØA	20	20	3C	6E	61	6D	65	. <name< td=""></name<>
21	AØ	3E	50	6C	61	79	65	72	20	> Player
23	A8	31	3C	2F	6E	61	6D	65	3E	1 < / n a m e >
24	BØ	ØD	ØA	20	20	3C	73	63	6F	< s c o
25	B8	72	65	3E	33	30	30	3C	2F	re>300 </td
26	00	73	63	6F	72	65	3E	ØD	ØA	score>
27	60	20	20	30	73	63	6F	72	65	< s c o r e
28	00	45	61	/5	6E	/4	3E	54	30	count>40
29	08	30	30	21	/3	63	61	/2	65	v < / score
	E0	45	65	/5	65	/4	35	00	UA 77	() U N T >
	EO	20	20	30	25	69	/0	76	/5	< 11 v e s
	F0	25	32	20	25	20	20	70	42	>2 11Ve</td
31	10	/5	20	00	6A	20	20	50	45	57 (C
35	86	6E	6C	6F	63	68	3E	30	30	n Lock > 0 <
36	10	21	43	61	74	65	67	61	72	/ Categor
37	18	/9	55	6E	6C	61	63	68	3E	yuniock>
6	20	60	0A	5C	26	55	51	/6	65	
ľ	20	22	/4	01	/4	00	20	00		state).

Gambar 9. Tampilan simpanan data pengguna untuk pengguna sebelum dienkripsi Pada Gambar 9, dapat dilihat bahwa data simpanan pengguna belum terenkripsi sehingga semua simpanan data dapat terbaca dalam bahasa xml. Pengguna yang mempunyai pengetahuan tentang scripting akan dengan mudah mengubah nilai data pengguna dalam game.

b. Setelah Dienkripsi

Edit Binary Value										
Value name:	Value name:									
save_h208833	38340									
Value data:										
00000000	77	73	54	78	69	50	68	39	wsTxiPh9	
69666668	59	4A	4C	69	59	62	78	4A	YJLİYbxJ	
00000010	50	30	36	68	77	71	5A	63	P06hwqZc	
00000018	4B	68	30	59	30	58	72	67	Kh@Y@Xrg	
00000020	61	30	5A	78	78	35	76	66	a 0 Z x x 5 v f	
00000028	38	33	4F	36	49	6F	70	6F	8306Iopo	
00000030	38	70	49	68	6C	50	31	66	8 p I h l P l f	
00000038	43	76	34	51	2F	72	48	73	CV4Q/rHs	
00000040	69	6A	55	63	76	64	68	46	1 J U C V d h F	
00000048	39	25	28	41	40	57	25	/2	9/+0MW/r	
00000050	54	45		61	66	48	41	63	TEWOTHAC	
00000058	38	72	53	77	6A	42	6D	63	8 r S w j B m c	
00000060	72	6F	52	7A	28	4C	78	4C	roRz+LxL	
00000068	72	59	53	6F	61	35	4B	50	rYSoa5KP	
00000070	37	50	49	64	48	53	66	6D	7 P I d H S f m	
00000078	31	7A	78	70	54	6E	79	2F	1zxpTny/	
00000080	48	68	66	51	44	39	54	79	HhfQD9Ty	
00000088	39	69	45	59	73	68	38	70	91EY 5 h 8 p	
00000090	5A	6A	44	4E	74	58	63	54	ZjDNtXcT	
00000098	47	53	68	67	31	55	57	6C	GSKglUWI	
000000000	61	48	51	7A	6C	61	60	30	angziome	
84899999	71	56	34	6A	52	57	4C	58	qV4jRWLX	
00000B0	54	6B	55	43	31	75	4E	50	TKUC1uNP	
0000088	6F	6E	47	2F	6E	41	78	50	onG/nAxP	
999999C9	4D	4B	76	5A	36	6F	49	6A	МКУZбоІј	
999999C8	44	52	4D	39	62	6E	4A.	75	DRM9bnJu	
666666D6	37	55	6D	66	31	46	6E	63	7Umf1Fnc	
8000008	52	74	39	44	48	69	70	2B	Rt9DHip+	
999999E9	4F	65	66	33	58	75	75	2F	Oef3Xuu/	
00000E8	6B	31	75	48	75	61	59	48	k 1 u H u a Y H	
00000010	4A	66	48	6C	46	4F	34	7A	J T N I F O 4 z	
000000F8	53	62	56	33	62	6A	54	71	S b V 3 b j T q	
00000100	4F	49	42	67	SA	49	39	41	OIBGZI9A	
00000108	33	50	45	67	4F	4F	6C	56	3 P E g O O I V	
00000110	68	46	51	78	54	4A	69	54	KF1XIJ1I	
00000118	40	74	25	30	69	68	51	42	MtQb1kQ2	
00000120	**/	45	65	49	64	40	70	42	ug/laaub	
00000120	33	4C 5.8	43	73	42	40	10	31	3 2 C r B e l 1	
00000130	76	79	53	28	50	72	75	AE	VVS+Pcu0	
00000130	76	48	35	50	71	52	76	68	vKSPaRvh	
00000140									v k y r y k v i	
00000148	32	6C	53	4C	51	4F	4F	62	2 1 S L Q O O b	
00000150	48	63	5A	48	64	30	36	4E	H C Z H d 0 6 N	
00000158	41	32	37	77	53	59	31	28	A 2 7 W 5 Y 1 +	
00000160	6C	4D	38	33	62	41	68	64	1 M 8 3 B 0 K d	
00000168	57	56	55	56	60	53	34	73	WVUV154s	
00000170	48	4A	45	44	40			48	K J E D L W W H	
00000178	55	32	41	OE CE	52	50	6A	16	5 Z A N R Ø J X	
00000180	41	32	30	61	70	70	64	40	R Z G O J O O L	
00000100	52	40	42	54	41	72	30	30	KNDZYFJF	
00000198	66	40	30	34	41		50	50		
									-	

Gambar 10. Tampilan simpanan data pengguna untuk pengguna setelah dienkripsi

Pada Gambar 10, dapat dilihat data pengguna yang telah dienkripsi yang diakses oleh pengguna. Nilai data pengguna di bagian kanan menjadi sulit untuk dipecahkan. Akan dibutuhkan kemampuan dan usaha yang jauh lebih tinggi untuk mengubah nilai simpanan data pengguna yang telah terenkripsi oleh UTF-8.

3. Pengujian Dekripsi Simpanan Data Pengguna dari Sisi Pengembang

Pengembang dapat mendekripsi data pengguna yang telah dienkripsi saat mengembangkan game di Unity dengan menggunakan perintah Debug untuk menampilkannya di console. a. Sebelum Didekripsi

Gambar 11. Tampilan console simpanan data pengguna untuk pengembang setelah dienkripsi

Pada Gambar 11, dapat dilihat bahwa data simpanan pengguna terenkripsi dengan UTF-8, sehingga semua simpanan data tidak dapat terbaca dengan bahasa awam karena dalam bentuk enkripsi UTF-8.

b. Setelah Didekripsi

Gambar 12. Tampilan console simpanan data pengguna untuk pengembang sebelum dienkripsi

Pada Gambar 12, dapat dilihat bahwa data pengguna telah terdekripsi sehingga data simpanan pengguna seperti nama, skor, skor tertinggi, nyawa, dan kategori yang terbuka dapat dilihat secara langsung.

4. Pengujian Ukuran Data Sebelum dan Sesudah Enkripsi

Tabel 5: Pengujian ukuran data sebelum dan sesudah enkripsi terhadap simpanan data pengguna menggunakan C# di Visual Studio 2019

Simpanan	Data P	Ukuran Data (Bytes)							
Nama	Skor	Total Skor	Jiwa	Kategory	Sebelum	Sesudah			
- Turna	ener		oma	rategory	Dienkripsi	Dienkripsi			
Player 1	0	0	3	3	299	409			
Player 1	100	100	3	3	303	409			
Player 1	200	300	3	3	303	409			
Player 1	300	600	2	3	303	409			
Player 1	400	1000	2	4	304	409			
Player 1	500	1500	3	4	304	409			
Player 1	600	2100	3	5	304	409			

KHARISMA TECH

Player 1	700	2800	1	5	304	409
Player 1	800	3600	2	6	304	409
Player 1	900	4500	1	7	304	409

Pada Tabel 5, merupakan hasil pengujian ukuran data simpanan data pengguna yang berupa nama (string), skor (float), total skor (float), jiwa (float), dan kategori (float). Pengujian dilakukan sebanyak 10 kali dengan nilai yang berbeda-beda. Hasil pengujian mempelihatkan ukuran data sebelum dan sesudah dienkripsi.

4. KESIMPULAN

Hasil enkripsi game smartphone Simulasi Perilaku Hidup Bersih dan Sehat dengan UTF-8 mengandung semua simpanan data pengguna yang telah dimainkan dan dites oleh peguji. Simpanan data yang telah dienkripsi adalah nama pengguna, skor terakhir, skor tertinggi, sisa nyawa, dan kategori yang sudah terbuka.

Data simpanan yang telah di-enkripsi sudah merupakan format UTF-8 sehingga lebih sulit untuk dilihat maupun diubah oleh pihak yang tidak berwenang. Bila ada mempunyai niat untuk melihat dan mengubah data yang telah di-enkripsi, dibutuhkan usaha dan kemampuan ekstra dan memakan waktu. Oleh karena itu, data simpanan aplikasi game smartphone Simulasi Perilaku Hidup Bersih dan Sehat sekarang mempunyai pertahanan standar dari kejahatan cyber. Semoga penelitian ini dapat menjadi referensi untuk bagian kriptografi di Indonesia.

DAFTAR PUSTAKA

[1] NIST Special Publication 1800-21 Mobile Device Security: Corporate-Owned Personally-Enabled (COPE) Includes Executive Summary (A); Approach, Architecture, and Security Characteristics (B); and How-To Guides (C) Final. September 2020.

[2] Kementerian Kesehatan RI Indonesia. Kementerian Kesehatan RI. Sekretariat Jenderal Peraturan Menteri Kesehatan Republik Indonesia nomor: 2269/MENKES/PER/XI/2011 Pedoman Pembinaan Perilaku Hidup Bersih dan Sehat (PHBS),-- Jakarta: Kementerian Kesehatan RI. 2011.

[3] Erickson, S. (2021). Character Encoding: A Primer for Data Curators. Journal of EScience Librarianship, 10.

[4] Kirana, C., & Sugianto, E. (2019). Penerapan Algoritma AES dan Konversi SMS ke dalam Bahasa KHEK pada Aplikasi Enkripsi Berbasis Mobile Application. *Khazanah Informatika: Jurnal Ilmu Komputer Dan Informatika*, *5*(1), 68–77.

[5] Prameshwari, A., & Sastra, N. P. (2018). Implementasi Algoritma Advanced Encryption Standard (AES) 128 Untuk Enkripsi dan Dekripsi File Dokumen. *Eksplora Informatika*, *8*(1).

[6] Widodo, B. E., & Purnomo, A. S. (2020). IMPLEMENTASI ADVANCED ENCRYPTION STANDARD PADA ENKRIPSI DAN DEKRIPSI DOKUMEN RAHASIA DITINTELKAM POLDA DIY. *Jurnal Teknik Informatika (Jutif)*, 1(2), 69–77. https://doi.org/10.20884/1.jutif.2020.1.2.21
[7] Unicode Consortium. 2021. "What Is Unicode?". <u>https://home.unicode.org/basic-info/faq/</u>, diakses pada 23 Januari 2022 12:02 AM.

[8] Cloudflare, Inc. 2022. "How Encryption Works".
 <u>https://www.cloudflare.com/learning/ssl/what-is-encryption/</u>, diakses pada 24 Januari 2022
 4:55 AM.

[9] Paul Leahy. 2019. "An Explanation of Unicode Character Encoding". <u>https://www.thoughtco.com/what-is-unicode-2034272</u>, diakses pada 24 Januari 2022 5:20 AM.

[10] American National Standard. 2007. Coded Character Sets - 7-Bit American National Standard Code for Information Interchange (7-Bit ASCII).

[11] Unity Technology. 2022. Unity 3D. In Unity Technology.

[12] Santos, E. A. (2019). OCR Evaluation Tools for the 21st Century. *Proceedings of the Workshop on Computational Methods for Endangered Languages*.