EVALUASI PERFORMA METODE LONG SHORT TERM MEMORY (LSTM) DAN RECURRENT NEURAL NETWORK (RNN) PADA ANALISIS SENTIMEN KOMENTAR PENGGUNA APLIKASI KITALULUS

Main Article Content

Nurzaenab Nurzaenab
Tatik Maslihatin
Agus Halid
Andi Yulia Muniar
Fitriana M. Sabir
Andi Maulidinnawati Abdul Kadir Parawewe
Neneng Awaliah
Halfiani Halfiani

Abstract

Sentiment analysis is one of the essential techniques in natural language processing for identifying user opinions toward a product or service. This study aims to evaluate the performance of the Long Short Term Memory (LSTM) and Recurrent Neural Network (RNN) methods in sentiment analysis of user comments on the Kitalulus application. A total of 2,500 comments collected from user reviews were utilized and underwent several preprocessing stages, including case folding, tokenization, stopword removal, stemming, and padding. The processed data were then trained using both RNN and LSTM models with similar architectural configurations. The experimental results show that the LSTM method outperforms RNN, achieving the highest accuracy of 91.51%, while RNN attained 88.48%. These findings demonstrate that LSTM is more effective in capturing long-term dependencies in textual data, making it more suitable for sentiment analysis of user comments on the application. 

Article Details

How to Cite
Nurzaenab, N., Maslihatin, T., Halid, A., Muniar, A. Y., Sabir, F. M., Parawewe, A. M. A. K., Awaliah, N., & Halfiani, H. (2025). EVALUASI PERFORMA METODE LONG SHORT TERM MEMORY (LSTM) DAN RECURRENT NEURAL NETWORK (RNN) PADA ANALISIS SENTIMEN KOMENTAR PENGGUNA APLIKASI KITALULUS. JTRISTE, 12(1), 86-92. https://doi.org/10.55645/jtriste.v12i1.614
Section
Articles

References

[1] L. R. Dharmawan, I. Arwani, and D. E. Ratnawati, “Analisis Sentimen pada Sosial Media Twitter Terhadap Layanan Sistem Informasi Akademik Mahasiswa Universitas Brawijaya dengan Metode K- Nearest Neighbor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 3, pp. 959–965, 2020, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/7099.

[2] R. Parlika, S. I. Pradika, A. M. Hakim, and K. R. N. M, “Analisis Sentimen Twitter Terhadap Bitcoin dan Cryptocurrency Berbasis Python TextBlob,” J. Ilm. Teknol. Inf. dan Robot., vol. 2, no. 2, pp. 33–37, 2020.

[3] S. Ailiyya, Analisis Sentimen Berbasis Aspek Pada Ulasan Aplikasi Tokopedia Menggunakan Support Vector Machine, Undergraduate thesis, UIN Syarif Hidayatullah Jakarta, 2020, p. 65.

[4] K. Maulidina, M. Kurnia, and E. I. Sela, Analisis Sentimen Komentar Warganet Terhadap Postingan Instagram Menggunakan Metode Naive Bayes Classifier dan Tf-Idf, Manuscript, Universitas Teknologi Yogyakarta, 2020, pp. 1–15.

[5] Y. Y. Astari, A. Afiyati, and S. W. Rozaqi, “Analisis Sentimen Multi-Class pada Sosial Media menggunakan metode Long Short-Term Memory (LSTM),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 1, p. 147, 2021.

[6] R. Kiramy, I. Permana, and A. Marsal, “Comparison of RNN and LSTM Algorithm Performance in Predicting the Number of Umrah Pilgrims at PT Hajar Aswad / Perbandingan Performa Algoritma RNN dan LSTM dalam Prediksi Jumlah Jamaah Umrah pada PT Hajar Aswad,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 4, pp. 1224–1234, 2024. doi: 10.57152/malcom.v4i4.1373